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A set of phenomena known as crowding reveal
peripheral vision’s vulnerability in the face of clutter.
Crowding is important both because of its ubiquity,
making it relevant for many real-world tasks and stimuli,
and because of the window it provides onto
mechanisms of visual processing. Here we focus on
models of the underlying mechanisms. This review
centers on a popular class of models known as pooling
models, as well as the phenomenology that appears to
challenge a pooling account. Using a candidate
high-dimensional pooling model, we gain intuitions
about whether a pooling model suffices and reexamine
the logic behind the pooling challenges. We show that
pooling mechanisms can yield substitution phenomena
and therefore predict better performance judging the
properties of a set versus a particular item. Pooling
models can also exhibit some similarity effects without
requiring mechanisms that pool at multiple levels of
processing, and without constraining pooling to a
particular perceptual group. Moreover, we argue that
other similarity effects may in part be due to
noncrowding influences like cuing. Unlike
low-dimensional straw-man pooling models,
high-dimensional pooling preserves rich information
about the stimulus, which may be sufficient to support
high-level processing. To gain insights into the
implications for pooling mechanisms, one needs a
candidate high-dimensional pooling model and cannot
rely on intuitions from low-dimensional models.

Furthermore, to uncover the mechanisms of crowding,
experiments need to separate encoding from decision
effects. While future work must quantitatively examine
all of the challenges to a high-dimensional pooling
account, insights from a candidate model allow us to
conclude that a high-dimensional pooling mechanism
remains viable as a model of the loss of information
leading to crowding.

Introduction

The puzzle of visual crowding

In the fovea (i.e., the central rod-free area of the
retina, approximately 1.7° diameter), recognition of
visual forms is relatively robust and effortless. This is
not the case for the 99% of the visual field outside the
fovea. It is well known that the visual system has trouble
recognizing peripheral objects in the presence of nearby
flanking stimuli, a phenomenon known as crowding
(Levi, 2008; Pelli & Tillman, 2008; Whitney & Levi,
2011). A classic demonstration can be seen in Figure 1.
Fixating the upper cross, one can likely easily identify
the isolated A on the left but not the one flanked by
additional letters. An observer might see that there is
an A in the string but not at its correct location—for
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Figure 1. Visual crowding. (top) Fixate the + and try to identify
the As on the left and right. (bottom) At a critical spacing,
identification of the A improves.

example, to the right of the R. They might not see
an A at all, or might see strange letterlike shapes
made up of a mixture of parts from several letters
(Lettvin, 1976). Move the neighboring letters—the
flankers—farther from the target A, and at a certain
critical spacing recognition is restored. The critical
spacing is approximately 0.4 to 0.5 times the eccentricity
(the distance from the center of fixation to the target)
for a wide range of stimuli and tasks (Bouma, 1970;
Pelli et al., 2009; Pelli, Palomares, & Majaj, 2004). Pelli
and Tillman (2008) have dubbed this Bouma’s law. This
roughly linear dependence on eccentricity means that
moving the display closer to or farther from the eyes
has little effect on the critical spacing of crowding, over
a wide range of viewing distances, which the reader can
observe with Figure 1.

Crowding phenomena cannot be attributed to
the peripheral loss of acuity (Bouma, 1970). Rather,
they highlight peripheral vision’s vulnerability to the
presence of clutter. Even the earliest descriptions of
crowding noted unique and interesting features distinct
from loss of acuity. Korte (1923) described that under
conditions of crowding, firm localization of detail
becomes extremely difficult. Lettvin (1976) remarked,
“It is not as if these things go out of focus—but rather
it’s as if somehow they lose the quality of ‘form”’ (p.
10). A peripherally viewed word “only seems to have
a ‘statistical’ existence…[preserving] every property
save that of the spatial order that would confer shape”
(Lettvin, 1976, p. 14).

Crowding affects many real-world visual stimuli and
tasks. It is not only relevant for recognition of arrays
of items such as letters. Self-crowding can also occur,
in which a single object can be sufficiently complex to
be cluttered on its own, impairing recognition even
without the presence of nominal flankers (Ehinger
& Rosenholtz, 2016; Martelli, Majaj, & Pelli, 2005).
Crowding has a far greater impact on perception
than the peripheral loss of acuity or color vision,
and it is the dominant difference between foveal and
peripheral vision (Rosenholtz, 2016). It impacts visual
search, object recognition, scene perception, perceptual
grouping, shape perception, and reading (e.g., Pelli &
Tillman, 2008; Pelli et al., 2007; Rosenholtz, Huang, &
Ehinger, 2012; Rosenholtz, Huang, Raj, Balas, & Ilie,
2012). The information that survives crowding must
suffice to guide eye movements and give us a coherent
view of the visual world (Rolfs, Jonikaitis, Deubel, &

Cavanagh, 2011). Its pervasive effects mean that we
cannot hope to understand much of vision without
understanding, controlling for, or otherwise accounting
for the mechanisms of visual crowding.

A challenge in understanding the mechanisms
underlying crowding is distinguishing those
mechanisms from the rest of object-recognition
processing. In crowding experiments, we present a
stimulus to the experimental subject and observe the
outcome of the entire processing pipeline (Figure 2).
A given condition could be difficult because of any of
these stages of processing. We do not aim to elucidate
the entire process for recognizing crowded objects
(Tyler & Likova, 2007), nor for performing visual tasks
more generally, but rather to model an important
bottleneck in visual processing and thus understand
what information survives and how that influences
decision making and predicts the difficulty of visual
tasks.

A dominant theory of crowding: Pooling models

Crowding phenomenology—the jumbling, the loss
of location information, and the seemingly statistical
nature of the perceived stimulus—have pointed a
number of researchers toward one particular class of
crowding mechanisms. Crowding has been attributed
to excessive or faulty feature integration, to compulsory
averaging, or to forced texture processing (Balas,
Nakano, & Rosenholtz, 2009; Lettvin, 1976; Levi, 2008;
Parkes, Lund, Angelucci, Solomon, & Morgan, 2001;
Pelli & Tillman, 2008), resulting from pooling over
local regions (Balas et al., 2009; Parkes et al., 2001;
Pelli et al., 2004). Pooling has typically been taken
to mean averaging (Parkes et al., 2001) or otherwise
computing summary statistics (Balas et al., 2009;
Lettvin, 1976) of features within the local region.
Despite differences in terminology, these descriptions
appear to refer to similar theories: So-called excessive
integration—over a region beyond the bounds of
the target object—can be thought of as averaging or
pooling over a sizable area of the visual field, and the
operations involved in computing summary statistics
are similar to mechanisms proposed to account for
texture perception (for a review, see Rosenholtz, 2014).
This class of crowding model is commonly known as a
pooling model.

A fair assessment of the current state of the field is
that pooling models dominate theories of crowding.
These models are often not well specified, but we can
infer a few critical attributes both from implemented
pooling models and from research that claims to
challenge a straightforward pooling account: First,
pooling regions subtend sizable areas of the visual
field and grow linearly with eccentricity (Bouma,
1970). Second, in straightforward versions of pooling

Downloaded from jov.arvojournals.org on 09/05/2024



Journal of Vision (2019) 19(7):15, 1–25 Rosenholtz, Yu, & Keshvari 3

Figure 2. A candidate architecture for object-recognition processing. Each visual input proceeds through a series of encoding stages
that gradually advance understanding of its contents. The encoding likely favors easy performance of ecologically relevant tasks at the
expense of performance of other tasks (DiCarlo & Cox, 2007). Each stage may also lose information, perhaps because of limited
resources. Finally, the organism makes inferences about the visual world. The observer may have more information for some
decisions than others, making some tasks inherently easier. Object recognition could be difficult because of any of these stages of
processing. The goal of understanding crowding is to uncover the mechanisms particular to crowding phenomena. Standard pooling
models of crowding presume that crowding results from losses at a single stage of processing—e.g., as indicated in orange.

models pooling occurs on a single processing level
with pooling regions that are fixed in size, rather than
changing with the stimulus or task. Although peripheral
object recognition no doubt requires processing at
multiple levels of a visual-processing pipeline, crowding
models both from our own lab (e.g., Balas et al.,
2009; Rosenholtz, Huang, & Ehinger, 2012) and from
Freeman and Simoncelli (2011) explain crowding
phenomena with fixed pooling at a single level (see
also Pelli et al., 2004). Furthermore, arguments against
a straightforward pooling account have explicitly
criticized this assumption of fixed pooling regions at a
single processing level (e.g., Kimchi & Pirkner, 2015;
Louie, Bressler, & Whitney, 2007; Malania, Herzog, &
Westheimer, 2007). Third, pooling regions overlap, and
sparsely tile the visual field. In other words, neighboring
pooling regions of a particular class—that is, that pool
the same feature—do not exist at every possible spatial
location. Rather, while neighboring regions overlap,
their centers are separated by some distance (Balas
et al., 2009; Freeman & Simoncelli, 2011). Pooling over
sparse, sizable regions loses information, meaning one
cannot generally reconstruct the visual input. Without
sparseness and the resulting loss of information,
pooling models would predict no crowding. Finally, we
assume that after pooling, visual processing continues
with whatever information remains.

If pooling occurs at a single level of processing, it
is natural to ask at what level. Researchers have found
evidence from adaptation studies that this level lies
beyond V1 (He & Cavanagh, 1996; Liu, Jiang, Sun,
& He, 2009; although see Nandy & Tjan, 2012), and
have argued that pooling occurs shortly after early
feature detection, in some sort of feature integration
stage (Pelli et al., 2004; Pelli & Tillman, 2008). A

number of implemented pooling models of crowding
either explicitly or implicitly (through their choice
of mechanisms) assume that pooling occurs after V1
(Balas et al., 2009; Freeman & Simoncelli, 2011; Parkes
et al., 2001; van den Berg, Johnson, Anton, Schepers, &
Cornelissen, 2012).

Crowding impairs many visual tasks, and yet
peripheral vision supports a rich percept of the visual
world. In order for a pooling model to be viable, it must
predict both the limitations and the capabilities of visual
perception. As a result, Rosenholtz (2014) has argued
that we must make two additional assumptions. First,
a pooling model must pool a large number of features,
meaning the mechanism must involve a large number
of populations of receptive fields (say, on the order of
1,000), with each population pooling a different feature.
Second, Rosenholtz argues (and for the purposes of
this article we assume) that the mechanism pools image
features. In other words, it pools the outputs of filtering
operations plus nonlinearities, as opposed to averaging
the features of individuated items. An item-based model
might, for example, extract the orientation of each bar
in an array and average those orientations. Using object
features can simplify modeling; for example, one can
more easily construct an ideal observer for observations
consisting of a discrete set of item features (Parkes et al.,
2001; van den Berg et al., 2012) than for continuous
outputs of image-processing operations. However,
while one can certainly make interesting progress by
studying object-based models (van den Berg et al.,
2012), ultimately there are limits to the generalizability
of such models (Keshvari & Rosenholtz, 2016). To
distinguish the class of models that pool large numbers
of image features from a pervasive simple pooling model
(e.g., Greenwood, Bex, & Dakin, 2009, 2012; Levi &
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Carney, 2009; Parkes et al., 2001) that pools small
numbers of features or item features, we call the former
high-dimensional (HD) pooling model.

Work from Rosenholtz and colleagues (Balas
et al., 2009; Ehinger & Rosenholtz, 2016; Keshvari &
Rosenholtz, 2016; Rosenholtz, Huang, & Ehinger, 2012;
Rosenholtz, Huang, Raj, et al., 2012; X. Zhang, Huang,
Yigit-Elliot, & Rosenholtz, 2015), has developed and
tested an HD pooling model that we call the Texture
Tiling Model (TTM).1 The model consists of two
stages. In the first stage, TTM implements a V1-like
representation consisting of responses to oriented,
multiscale feature detectors. In the second stage, the
model computes a large set of second-order correlations
from the responses of that stage, taking the average
over local pooling regions (TTM also computes more
basic first-order summary statistics within each color
band; Balas et al., 2009). These pooling regions grow
linearly with eccentricity, in accord with Bouma’s law,
and overlap and tile the visual field. The information
encoded in the second stage, where pooling happens,
has been associated with the information encoded
physiologically, post-V1 (e.g., Freeman, Ziemba,
Heeger, Simoncelli, & Movshon, 2013; Yamins &
DiCarlo, 2016). In addition, standard models of
hierarchical visual processing (e.g., Fukushima,
1980; Riesenhuber & Poggio, 1999) often have as
a second stage the computation of co-occurrence
of combinations of features from the first stage;
second-order correlations are merely co-occurrence
computations pooled over significantly larger regions.
The set of statistics we measure are those identified by
Portilla and Simoncelli (2000), because that set has
been successful at capturing the appearance of textures
for human perception. Specifically, textures synthesized
using this set of statistics are often difficult to
discriminate from the original (Balas, 2006). Mounting
evidence supports TTM as a good candidate HD
pooling model for the peripheral encoding underlying
crowding. We have shown that it predicts performance
at a range of peripheral recognition tasks involving
arrays of letters and other symbols (Balas et al., 2009;
Keshvari & Rosenholtz, 2016; Rosenholtz, Huang, &
Ehinger, 2012; Rosenholtz, Huang, Raj, et al., 2012).
The same model predicts the difficulty getting the gist
of a scene when fixating—that is, when forced to use
extrafoveal vision—compared to when free-viewing that
scene (Ehinger & Rosenholtz, 2016). With the same
image statistics but a somewhat different arrangement
of pooling regions, (Freeman & Simoncelli 2011) have
predicted the critical spacing of crowding. They have
also shown that equating those local summary statistics
creates synthetic metamer images that are difficult to
distinguish one from another when viewed with the
same fixation as used by the model (though see Wallis,
Bethge, & Wichmann, 2016). While in all of these
studies there has remained variance unexplained by

the model, and thus room for improvement, these HD
pooling models have so far proven quite powerful at
capturing crowding and related visual phenomena.

Challenges to a pooling account of crowding

In spite of the success of HD pooling models,
however, questions remain. Behavioral researchers have
made considerable progress understanding crowding in
the last 1.5 decades. They have substantially expanded
crowding phenomenology to a wider array of stimuli
and tasks, moving well beyond arrays of letters and
Gabors, to include stimuli with higher level grouping
effects and tasks with complex naturalistic stimuli. As
researchers have studied a wider range of stimuli and
tasks, a complex pattern of results has emerged. A
number of challenges have arisen to the relatively simple
pooling model, and it has seemed that a single unifying
explanation might not suffice. Researchers have called
into question virtually every feature of pooling models
highlighted in the foregoing, and instead proposed that
more complex and often more dynamic models may be
necessary. This review article centers on these challenges
to pooling models.

Some behavioral results have seemed to favor a
different type of mechanism entirely, for example the
substitution mechanisms described in more detail
in the next section (Strasburger, 2005; van den Berg
et al., 2012). Other results have seemed to suggest that
information is not lost, as it would be by a pooling
mechanism, but rather rendered unavailable for object
recognition (Chaney, Fischer, & Whitney, 2014; Yeh,
He, & Cavanagh, 2012). Finally, other results have
appeared to point to an attentional rather than a
pooling mechanism (Intriligator & Cavanagh, 2001).

Other challenges have pointed to pooling operating
at a different level of processing. For instance, Levi and
Carney (2009) have suggested that pooling might follow
segmentation into objects, perhaps also implying the
pooling of object features rather than image features.
Or perhaps multiple bottlenecks limit peripheral
processing, rather than a single bottleneck. Researchers
have suggested that crowding mechanisms might
operate at multiple levels of processing rather than at
a single feature-integration stage (Farzin, Rivera, &
Whitney, 2009; Ikeda, Watanabe, & Cavanagh, 2013;
Kimchi & Pirkner, 2015; Louie et al., 2007).

Finally, other challenges have suggested that pooling
regions, rather than being fixed, vary with the stimulus
and task (Banks & White, 1984; Bernard & Chung,
2011; Kimchi & Pirkner, 2015; Livne & Sagi, 2007;
Manassi, Lonchampt, Clarke, & Herzog, 2016;
Manassi, Sayim, & Herzog, 2012; Rosen & Pelli, 2015).
In the most popular version of this suggestion, pooling
occurs only within perceptual groups (Banks & White,
1984; Manassi et al., 2012).
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We refer to the set of phenomena challenging a
unified pooling-model account as the model challenges.
We discuss each of these in more detail in the following
sections. It is natural to think that this complex set
of phenomena rules out a unifying pooling-model
explanation. However, upon closer consideration, this
may not be the case. We will argue that pooling models
remain viable, in spite of numerous challenges.

Challenge 1: The mechanism of
crowding is not pooling but
substitution

An observer faced with an array of items such as
letters and asked to report the identity of a target may
instead report one of its flankers. Such substitution
phenomena are well known and well documented
(Huckauf & Heller, 2002; Poder & Wagemans, 2007;
Strasburger, 2005). These phenomena at first glance
appear to challenge a simple pooling model. Why, if
one encodes the average feature, would one report
the features of the flanker rather than the target?
Relatedly, other researchers have observed, “None of
our participants ever spontaneously reported seeing
[the mean]. This argues against … averaging and [in
favor of] an inability to accurately localize features”
(van den Berg, Roerdink, & Cornelissen, 2007, p. 10).
While in subsequent work (van den Berg et al., 2012;
van den Berg et al., 2010) these authors are firmly
in favor of pooling models (which they refer to as
integration models), later we revisit this observation in
order to clarify intuitions about what pooling models
predict.

Some researchers have further suggested that
substitution phenomena might arise from a substitution
mechanism. For example, the visual system might
measure the features and possibly even the identities
of both target and flankers, but either not encode their
locations at all or encode them in a noisy way (Chung
& Legge, 2009; Strasburger & Malania, 2013; van den
Berg et al., 2012). The loss of location information
would predict substitution errors, as the observer would
accidentally report the incorrect item.

A substitution mechanism would immediately have
consequences for set perception. If peripheral vision
preserves the identities of the display items but not
their locations, this would make reporting set properties
such as the mean orientation easier than recognizing
the features of a particular target item. This prediction
agrees with behavioral results (Fischer &Whitney, 2011;
Parkes et al., 2001). Fischer and Whitney (2011), for
instance, showed subjects a peripheral array of faces
and asked for both the facial expression of the central
target and the mean expression of the set. They found

that even though subjects had trouble reporting the
target facial expression, that expression nonetheless
contributed to judgments of the mean expression. They
argue that these results are incompatible with a pooling
mechanism, reasoning that if pooling loses information
about that central target, the information cannot also
be available to contribute to perception of the mean.

An HD pooling model can predict substitution
behavior and good set perception

We argue that these apparent challenges to a pooling
model arise from misunderstanding HD pooling. It
is difficult to reason about an HD pooling model,
particularly one that measures image rather than object
features. Researchers have instead attempted to gain
intuitions from lower dimensional models. However,
an HD pooling model will behave fundamentally
differently from its low-dimensional brethren.

To get intuitions about the information preserved
and lost by an HD pooling model, we can generate
members of the equivalence class of the model—that
is, images that are confusable with the original,
according to the model. Rosenholtz and colleagues
have called these images mongrels (Balas et al., 2009).
Consider the example in Figure 3. Loosely speaking,
information that appears clear and unambiguous
in these mongrels corresponds to information that
survives HD pooling. Tasks that appear easy to perform
with these visualizations are predicted by an HD
pooling model to be easy tasks. For all of the examples
in this article we generated at least 10 mongrels, and
present one or two typical ones. For example, if the
original task was to judge the orientation of a crowded
peripheral target, we rank-ordered the mongrels
according to our subjective assessment of the quality
of the information available to perform that task and
selected mongrels of median quality. To get a sense of
the variability among the mongrels for a single input
image, the full set of mongrels generated for Figures 3,
4, 7, and 16 are viewable in the supplementary material
at https://dspace.mit.edu/handle/1721.1/121152. At that
link can also be found the code for generating mongrels.

First and foremost, note that the encoding captures
a great deal of information about the appearance of
the stimulus. Sufficient information survives pooling to
determine that the input consists of black lines against
a white background. The model was not told anything
about oriented black lines, but enough information
survives pooling for later processes to get that gist.

Second, note the loss of location information. If
the task were to discriminate the orientation of the
central bar, observers might have trouble reporting
that orientation rather than the orientation of one of
the flankers. We can immediately see that a pooling
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Figure 3. Original image (left) and two members of the equivalence class of our candidate high-dimensional pooling model, the
Texture Tiling Model (right). The array is 3.6° in diameter, each item is 1° in length, and the fixation (not shown) is modeled at 10° to
the right of the central target. A high-dimensional pooling model encodes a great deal of information about the stimulus yet also
loses information, introducing uncertainty about the location and number of items.

model can predict substitution phenomena, at least
qualitatively (Harrison & Bex, 2015; Keshvari &
Rosenholtz, 2016).

To what extent swap errors occur in practice likely
depends in part on the task, with different answers
possible even with the same set of stimuli. Harrison
and Bex (2015) found a low number of swap errors
and suggested that those errors could be predicted
by their population-code model. (Note that HD
pooling models can also be considered population-code
models.) Agaoglu and Chung (2016) found that with
the same stimuli (concentric Cs), observers made
considerably more swap errors—that is, reported the
gap location from one C when asked about the gap
location for a different C. That high number of swap
errors likely arose from the complicated task, which
required observers to report both ring orientations,
with the order of the report varying from trial to trial
and postcued. Harrison and Bex’s experiments did not
have this additional source of uncertainty. Additionally,
for these stimuli it remains unclear how many swap
errors TTM predicts. Agaoglu and Chung tested an
early version of TTM, which used only a single pooling
region and seeded synthesis with a blurry version
of the original image. They showed that what they
called the “texture synthesis model”2 rarely produces
such substitution errors and concluded that TTM
cannot predict the magnitude of substitution effects.
However, it is worth noting that we originally used
the blurry seed to reduce location uncertainty, as the
single-pooling-region version of the model preserves no
absolute location information (Balas et al., 2009). We no
longer use this technique in the full version of TTM
with multiple pooling regions. It is an open question
whether TTM predicts more swap errors for these
stimuli.

The third thing we can note from Figure 3 is
that, for this simple display, pooling preserves
enough information to determine the distribution of

orientations fairly accurately. An observer asked to
report the orientation of the central target would have
no reason to report it as vertical, as the representation
makes clear that the stimulus contains no vertical lines.
If this were the information available in the periphery,
observers should be good at reporting all sorts of set
properties. Once pooling loses location information,
set perception becomes inherently easier than reporting
a particular item. The visual system has information
about the set, but information about a given item
becomes inaccessible in the sense of it being difficult to
determine which item is the desired target.

This general logic generalizes to other kinds
of set perception, such as mean facial expression
(Figure 4). HD pooling has no difficulty predicting
that an incorrectly identified target can contribute
to the perceived mean. For such complex stimuli
as those of Fischer and Whitney (2011), the more
pressing question is whether our particular HD
pooling model preserves enough information to predict
judgments of mean facial expression at human accuracy
levels. These mongrels suggest that HD pooling
“render[s] further object processing” difficult, but
not “impossible” (Fischer & Whitney, 2011, p. 1397).
Clearly, set-perception performance—according to an
HD pooling model—depends upon the complexity of
the individual items and of the display.

Substitution phenomena do not eliminate pooling
models. One might ask why, then, studies ever find
averaging effects (e.g., Greenwood et al., 2009; Parkes
et al., 2001). There are two reasons. First, when
target and flanker features are sufficiently similar,
representation of those features can become poorer.
(See, for example, representation of the similar
orientations in Figure 7.) The orientation of the central
target appears to be a mix of that of the target and
those of the flankers. Under such conditions, one might
imagine that observers would report something like the
mean feature, and they do (Greenwood et al., 2009).
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Figure 4. (left) Reprinted with permission from “Object-level visual information gets through the bottleneck of crowding,” by J. Fischer
and D. Whitney, 2011, Journal of Neurophysiology, 106(3), p. 1390. Copyright 2011 by the American Physiological Society. The faces
were adapted from face stimuli in Ekman’s Pictures of Facial Affect (POFA) collection and are reprinted with permission from the Paul
Ekman Group. (right) Two typical mongrels. Fixation and a 1° fovea indicated by the circle. The faces used in the emotional morph
were drawn from Ekman’s Pictures of Facial Affect collection and are reprinted in modified form with permission from the Paul Ekman
Group.

Second, observers may base their decision upon the
average because doing so is a good strategy for a given
task. In their seminal article, Parkes et al. (2001) showed
observers one or more target Gabors, tilted clockwise
or counterclockwise, and observers had to report the
direction. All targets on a given trial had the same
tilt. In one condition, n targets were present with no
distractors. In the other condition, nine items appeared:
n targets and 9 − n distractor Gabors with zero tilt. The
researchers found that they could better fit the results
with a model in which observers based their decision
on the mean of the noisy orientation observations
than with a signal-detection-theory (SDT) model in
which observers retained observations for every Gabor.
One might be tempted to conclude that an observer
only has access to the mean (compulsory averaging).
However, it turns out that responding based upon the
mean orientation yields better results than the supposed
SDT strategy described by Morgan and Solomon
(2005).3 Their SDT strategy chooses the tilt direction
by finding the maximum observation M (the most
clockwise observation) and the minimum observation
m. The model chooses the clockwise response if |M| >
|m|, counterclockwise if not. This strategy is not ideal
for a threshold experiment in which multiple targets
deviate by the same amount (Ma & Huang, 2009).
Intuitively, as the number of targets increases, the SDT
model cannot make use of the additional information
to estimate the tilt. On the other hand, the averaging
model, which chooses clockwise if the average of the
noisy observations is greater than 0, does make use of
information from additional targets. Figure 5 shows for
both models the predicted fraction correct as a function
of the number of targets, given the same internal
noise. The pattern of results is the same regardless
of the internal noise (excluding extremes in which
predicted performance is at ceiling or at floor for both
models). An observer following the SDT strategy never

Figure 5. Performance of compulsory averaging and
signal-detection-theory models with the same internal noise.
Solid curves show predicted performance for the Parkes, Lund,
Angelucci, Solomon, and Morgan (2001) condition in which
stimuli contained both tilted targets and nontilted distractors.
Dashed curves show predicted performance for the Parkes
et al. condition in which stimuli contained only tilted targets. In
both conditions the target tilt was 12.5° and the internal noise
was Gaussian distributed with a standard deviation of 30°.
Performance is always the same or better for the averaging
model (red curves) than for the signal-detection-theory model
(green curves). Rather than compulsory, averaging may be a
good strategy for these particular conditions.

performs better than one making their decision based
on the average, for the Parkes et al. tasks. An optimal
model, with access to the full but noisy distribution of
orientations, would behave as if it had access only to
the mean.
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Figure 6. (A) Original image based on stimuli from Intriligator
and Cavanagh (2001). (B) Two typical mongrels overlaid, with
red indicating regions that were black in one mongrel but not
the other. Fixation and a 1° fovea indicated by the circle.

Much has been made of the apparent dichotomy
between substitution and averaging behavior (Ester,
Klee, & Awh, 2014; Freeman, Chakravarthi, & Pelli,
2012; Greenwood et al., 2009). However, pooling
models can produce substitution phenomena, and
models capable of producing substitution phenomena,
in turn, should sometimes produce averaging behavior.

An HD pooling model does not behave like a
slots model

One way of implementing a substitution model
would be to have n slots, one for each item in the
stimulus and its features, akin to slots models of
short-term memory (Zhang & Luck, 2008). Entire items
might swap between slots, leading to classic substitution
effects, or features might swap between slots, leading to
more complex sorts of confusions.

The previous subsection discussed the fact that a
pooling model can produce substitutionlike confusions.
However, it should also be clear that a pooling model
does not behave like a slots model. As we can see in
Figure 3, pooling does not simply make items or their
features swap positions with each other, but rather
makes features and their locations ambiguous and
confusable. Pooling can even produce ambiguity about
the number of items present. Put another way, an HD
pooling model operates on image features, not a list of
items and their features; nor is the information available
at the output of a pooling model simply a list of items
and their features.

Intriligator and Cavanagh (2001) attempted to
distinguish between a pooling and an attentional-
selection mechanism for crowding. We discuss their
work as part of the substitution-related challenges
because they presume that a pooling model acts
like a slots-based substitution model. They cued
one of a number of identical disks (Figure 6A),
then instructed observers to move the focus of their
attention from item to item in a prescribed way
(“left-right-right-left-right…”). Then they asked

observers to identify the item indicated by the cue
plus series of instructions. They varied item spacing
until observers reached threshold performance levels.
The resulting critical spacing was similar to that of
crowding. Thus, they suggested that crowding arises
from an inability to selectively attend to the target. Of
interest here is their claim that “mixing of adjacent
features … cannot contribute to the critical spacing
in our [study] where target features and identity are
irrelevant” (p. 208). Their reasoning seems to presume
that vision has some number of slots, each containing
the features of one item; feature pooling mixes up the
contents of the slots—irrelevant in this case, since
the slots contain identical items—but not the slots
themselves. As a result, they reason, their results cannot
be due to pooling.

In Figure 6B we have overlaid a pair of mongrels
for Figure 6A, with red indicating regions that were
black in one mongrel but not the other. The difference
between the two mongrels demonstrates the position
uncertainty inherent to the model. One might imagine
that this degree of uncertainty would make attentionally
tracking the target difficult. Because an HD pooling
model does predict negative effects of crowding even
when the display items are identical, one cannot rule it
out as an explanation for the results of Intriligator and
Cavanagh (2001).

Challenge 2: Crowding arises from
multilevel pooling

Straightforward versions of pooling models presume
that crowding arises from pooling at a single critical
level of processing. Some recent theories have suggested
instead that crowding might involve pooling at
multiple levels of processing. In addition to pooling
soon after early feature detection, there might exist
crowding mechanisms at the part-processing level
or shape-processing level (Kimchi & Pirkner, 2015),
the face-processing level (Farzin et al., 2009; Louie
et al., 2007), and the point-light-walker-processing
level (Ikeda et al., 2013). This is an attractive and
rather intuitive idea, at first glance, because it
parallels standard models of object recognition (e.g.,
Fukushima, 1980; Riesenhuber & Poggio, 1999).
Standard hierarchical models of vision do involve
multiple levels of processing, with some sort of
pooling or integration at each level. However, while
object-recognition models do usually alternate between
filtering and pooling stages, the pooling typically occurs
over an area not much larger than the size of the filter
(Krizhevsky, Sutskever, & Hinton, 2012; Riesenhuber
& Poggio, 1999), and thus might not cause crowding
per se.
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There is an immediate reason to be concerned
about the suggestion that models of crowding need to
incorporate multiple levels of pooling: Our candidate
HD pooling model already loses a lot of information
through pooling at a single level, and yet quantitatively
predicts a number of phenomena. Our modeling thus
far has not suggested the need to pool at additional
levels, in spite of testing a relatively large variety of
tasks and stimuli. If one were to pool at additional levels
of processing, additional information would be lost,
perhaps reducing the predictive power of the model.
(Note that this particular criticism would not apply to
the hierarchical model of Chaney et al. (2014). Rather
than losing information at each level of processing, that
model predominantly loses information at the decision
stage, through a mechanism that can access only a
sparse sampling of receptive fields in order to make
a decision.) Here we reassess the multilevel-pooling
claims both on a theoretical level and using intuitions
from our HD pooling model.

Many claims of multilevel pooling involve similarity
effects, in which it is easier to identify a target flanked
by dissimilar items than one flanked by similar items.
Such effects are prevalent in the crowding literature.
Identifying a target letter is easier when it pops out from
the flanker letters due to a difference in color (Scolari,
Kohnen, Barton, & Awh, 2007), and similar effects
have been found for large target–flanker differences
in orientation (Andriessen & Bouma, 1976), contrast
polarity, shape, and binocular disparity, but not eye of
origin (Kooi, Toet, Tripathy, & Levi, 1994).

One theory about why these similarity effects occur
is that pooling operates only within a feature band.
(Alternatively, although the distinction is not critical
for the present discussion, inhibition might occur only
within a band; Andriessen & Bouma, 1976; Kooi et al.,
1994; Levi, Hariharan, & Klein, 2002). According
to this theory, if the stimulus has similar flankers,
pooling mixes them in with the target, leading to
crowding. Dissimilar flankers do not mix with the
target, leading to a release from crowding. If this theory
is correct, then a seductive corollary would seem to
be that one can figure out where in visual processing
it is that pooling (i.e., crowding) occurs by looking
at what kind of similarity effects one finds. If one
finds a shape similarity effect, then pooling must be
at the shape-processing stage. This suggestion that
one might uncover brain mechanisms through simple
psychophysical experiments, coupled with standard
models of hierarchical processing, makes multilevel
crowding doubly attractive as a theory.

There are problems, however, with interpreting
similarity effects in terms of the level of pooling. First,
the theory presumes that recognition operates by having
a receptive field tuned to the target object, reminiscent
of grandmother cells, and that crowding arises because
flankers lie within that receptive field, disrupting

identification. But particularly at higher levels of
processing, the encoding is likely more distributed. In a
distributed encoding scheme, target identification arises
through combining information from multiple feature
detectors rather than from the response of a single
band sensitive only to the target. Even in low-level
vision, information from multiple receptive fields in V1,
tuned to different orientations, combines to identify the
underlying orientation.

Second, before using a similarity effect to reason
about the level at which pooling occurs, one needs
to confirm the level of (dis)similarity of target and
flankers. Confirming that it is at a high rather than a low
level—or, equivalently, controlling low-level similarity
while varying high-level similarity—is notoriously
difficult. Higher level classifications typically derive at
least in part because of shared lower level features.

Both of these theoretical arguments suggest that
there may be a mismatch between the apparent level
of similarity between target and distractors and the
pooling level that produces the effect. In fact, we see
evidence of just that. Let us look at some mongrels
to get intuitions about what an HD pooling model
predicts. Our candidate HD pooling model largely
pools pair-wise combinations of responses of V1-like
orientation detectors. (Notable exceptions are its
computation of marginal statistics of luminance
and color.) One might think of it as pooling at the
junction-processing level. Figure 7 shows a similar
(top) and a dissimilar orientation (bottom) condition.
The slightly tilted target line in the center is the same
in both cases. On the right are two mongrels for each
condition. What one should look for is how well these
mongrels preserve the tilted target, and in particular
how well one could judge its orientation. One can easily
observe the more faithful representation of the target in
the condition with dissimilar flankers. Our HD pooling
model can at least qualitatively predict an orientation
similarity effect (and in some cases quantitatively; see
Keshvari & Rosenholtz, 2016), and yet it has no pooling
at the orientation-processing stage. There is a mismatch
between level of similarity and level of pooling.

For another example, consider the similarity effect
in Figure 8, based on sign of contrast. It is easier to
recognize the target (G) when it has a different sign of
contrast than the flankers (Kooi et al., 1994). Looking at
the mongrels, the G shape is quite well preserved in the
dissimilar condition. Our HD pooling model predicts,
at least qualitatively, a sign-of-contrast similarity effect,
and yet it does not pool at a sign-of-contrast stage.
There is a mismatch between the level of similarity
and the level of pooling that produces the observed
similarity effect.

Finally, consider the shape similarity effect from
Kimchi and Pirkner (2015). They flanked a target
square composed of L junctions with a variety of
flankers. Figure 9 gives two key examples. In the first
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Figure 7. Orientation similarity effect. Determining the tilt of the central target is easier when flankers have dissimilar orientation
(bottom) versus similar (top). In each row, the two images on the right show two mongrels, visualizations of the information available
according to our high-dimensional pooling model. The target and its orientation are clearer in the two mongrels for the dissimilar
condition; high-dimensional pooling better encodes the target in that condition. High-dimensional pooling predicts this orientation
similarity effect without pooling at an orientation-processing stage.

condition, flankers have the same overall shape as the
target, but consist of nominally different parts: straight
lines instead of L junctions. In the second condition,
flankers consist of the same L parts as the target,
but those parts form different shapes. The observer
indicated the orientation of the target—that is, whether
it appeared as a diamond or a square. At the eccentricity
shown, it is easier to recognize the square target when it

is flanked by dissimilar shapes than by similar shapes.
Again, the mongrels indicate that our HD pooling
model better encodes the target in the dissimilar
condition than in the similar condition; in other words,
the HD pooling model predicts the shape similarity
effect without any pooling at a shape-processing stage.
Again, there is a mismatch between level of similarity
and level of pooling.

Figure 8. Sign-of-contrast similarity effect. Identifying the central letter is easier when flankers have an opposite sign of contrast
(bottom). In each row, the two images on the right show two mongrels, visualizations of the information available according to our
high-dimensional pooling model. The target’s identity is clearer in the two mongrels for the dissimilar condition. High-dimensional
pooling better encodes the target in that condition. High-dimensional pooling predicts a sign-of-contrast similarity effect without
pooling at a sign-of-contrast processing stage.
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Figure 9. Kimchi and Pirkner (2015) found crowding both when a central square formed of L junctions was flanked by squares formed
without L junctions (same shape, different parts, top left) and when it was flanked by L junctions that did not form a square (same
parts, different shape, bottom left). However, this does not imply that crowding must happen at both the part and shape levels of
processing. Mongrels on the right of the arrows show signs of crowding for both conditions. Crowding seems worse for the
same-shape flankers, in agreement with experimental results for the modeled eccentricity of 5°. Original stimuli recreated based on
stimuli from “Multiple level crowding: Crowding at the object parts level and at the object configural level,” by R. Kimchi & Y. Pirkner,
2015, Perception, 44(11), p. 1286, with permission from the author, R. Kimchi.

Several articles from Whitney and colleagues have
made a somewhat more complicated argument for
crowding at a holistic face-processing level (Louie,
Bressler, & Whitney, 2007; Farzin, Rivera, & Whitney,
2009). Louie et al. (2007) asked observers whether a
target face appeared on the left or right side of the
display, or not at all (Figure 10 shows a single side of
the display). They found greater crowding when upright
faces flanked the target than when inverted faces did.
On the other hand, they found no effect of upright
versus inverted flankers when the task was instead to
detect a target house among house flankers (Figure 10).
They argue that the difference between faces and
houses may derive from holistic processing of faces
versus part-based processing of houses. These results
by themselves could arise from a relatively low-level
similarity effect. Faces may show an effect of upright
versus inverted flankers and houses not show such
an asymmetry simply because there is less difference
between an upright and an inverted house compared to
an upright and an inverted face. Cropping the house
stimuli further increases the similarity between upright
and inverted houses, by eliminating distinguishing roof
features. On the other hand, it does not seem obvious
that TTM per se can predict the similarity effect.
From the example mongrels in Figure 10, it appears
difficult to identify the face or house in either condition,
whereas in the original study observers had a d′ in the
range of 2.5 to 3 for the upright face targets and around
3.5 for upright house targets. More quantitative study

is needed, but we may find that TTM lacks necessary
features to predict this relatively good performance.
However the additional features that may be required
are not obviously at the holistic face-processing level.

Louie et al. (2007), however, additionally argue for
involvement of holistic face processing based on the
results of repeating the two face conditions, but with the
entire display inverted. The target faces then appeared
upside down, and this manipulation eliminated the
asymmetry between upright and inverted flankers. The
researchers argue that flipping the stimuli should not
change low-level similarity, concluding that their results
arise from holistic face processing and that crowding
can occur at the face-processing stage.

We agree that inverting the entire display should
have minimal effect on low-level similarity but dispute
that the results of Louie et al. (2007) necessitate that
crowding operates at the holistic face-processing level.
First, it is notable that Sun and Balas (2015) did not
replicate the effect of inverting the entire display. They
asked observers to categorize the gender of a target
face and found crowding for a target flanked by facelike
stimuli like line drawings and U.S. electrical sockets.
Unlike Louie et al., Sun and Balas did find that the
upright/inverted flanker asymmetry reversed when they
inverted the target face, consistent with a low-level
similarity effect.

Second, it is arguable that Louie et al. (2007) found
no difference between upright and inverted flankers
in their inverted face conditions because performance
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Figure 10. Original stimuli (left of the arrows) and their mongrels (right of the arrows) from Louie, Bressler, and Whitney (2007). The
first two rows show target face surrounded by upright (first row) versus inverted (second row) flankers. The last two rows show a
target house surrounded by upright (third row) versus inverted (fourth row) flankers. Original stimuli adapted from “Holistic crowding:
Selective interference between configural representations of faces in crowded scenes,” by E. G. Louie, D. W. Bressler, and D. Whitney,
2007, Journal of Vision, 7(2):24, p. 3–4. Copyright 2007 by E. G. Louie, D. W. Bressler, and D. Whitney. Reprinted with permission.

was near floor. Along these lines, Kalpadakis-Smith,
Goffaux, and Greenwood (2018) systematically
investigated the influence of task difficulty on face
crowding. They asked observers to identify the
horizontal separation between the eyes and found a
similarity effect for both an upright and an inverted
target face when the task was easy (large differences
in interocular distance). However, when the task was
difficult (small differences in interocular distance), they

found no similarity effect for either upright or inverted
targets. Whitney and colleagues have argued, however,
that the lack of a holistic processing pattern of results
may arise from using a nonholistic face task (Manassi
& Whitney, 2018). However, Kalpadakis-Smith et al.
showed that discriminating small differences in the
horizontal separation between the eyes of a single face
was indeed easier when the face was upright compared
to inverted, following the pattern of a holistic task.
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Figure 11. Original stimuli (left of the arrows) and their mongrels (right) from Farzin, Rivera, and Whitney (2009). Target faces are hard
to identify when they are crowded by upright face flankers (top row) compared to inverted flankers (bottom row). Our model, without
implementing a holistic face-processing mechanism, preserves some information for face tasks, as suggested by the mongrels.
Arguably, it is also easier to guess the target face identity from the mongrels in the bottom row compared to the top, but further work
with a larger set of stimuli would be necessary to quantify this. Original stimuli reprinted with permission from “Holistic crowding of
Mooney faces,” by F. Farzin, S. M. Rivera, and D. Whitney, 2009, Journal of Vision, 9(6):18, p. 10. Copyright 2009 by F. Farzin, S. M.
Rivera, and D. Whitney.

Nevertheless, they found no difference between upright
and inverted flankers when observers performed this
task on a crowded face in their periphery.

Holistic processing may well be involved at a later
stage; it operates on the information that survives
crowding to produce better performance identifying an
upright face than an inverted face. The lack of holistic
processing for the inverted face conditions of Louie
et al. (2007) likely led to the near-floor performance
for inverted targets. However, we would not call this a
crowding mechanism per se, as performance is better
for upright faces even in the fovea. (Interestingly, visual
search for a cube among differently lit cubes also has an
asymmetry that does not persist when the entire display
is inverted. In that case, we have similarly argued for
a later loss of information due to estimating 3-D
shape while discounting illumination; X. Zhang, et al.
2015. Again, we would not call this additional loss of
information crowding, and in fact we saw evidence of
this loss even in fixating individual, uncrowded cubes.)

Farzin et al. (2009) have also argued for holistic
face crowding, using somewhat different logic. They
asked observers to perform a number of tasks with
Mooney faces (e.g., judging the orientation or gender
of the target) and found classic crowding effects
(Figure 11). They also found a similarity effect: greater
crowding of an upright Mooney face by upright
flankers than by inverted ones. They did not test for

an inversion effect, leaving open the possibility of a
low-level similarity effect and low-level mechanisms.
Rather, they argue against low-level crowding on
the basis that Mooney-face tasks require holistic
processing (Kanwisher, Tong, & Nakayama, 1998).
Certainly, as illustrated in Figure 11, it is not obvious
that TTM predicts the similarity effect. However, we
argue that holistic face crowding does not logically
follow. Processing Mooney faces requires processing at
multiple levels prior to the supposed holistic processing.
If recognition of Mooney faces fails under conditions
of crowding, something must have gone wrong with
one of those processing stages, but the fault does not
obviously lie with the holistic processing stage. For an
extreme example, just to make the point: If you closed
your eyes and failed to identify the gender of a Mooney
face, you would not blame the holistic processing stage.

In summary, one should be careful not to confuse
phenomena with mechanisms. Just because crowding
occurs when, for example, flankers have similar parts to
the target, that does not mean that crowding occurs at
the parts level of processing. Dakin, Cass, Greenwood,
and Bex (2010) similarly argue that the seemingly
object-level crowding effects they found may have a
low-level explanation. One cannot easily reason from
similarity effects to the stage at which pooling occurs.
Nor can we rule out, at this time, the possibility that
crowding is due to a single level of pooling.
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Challenge 3: Flexible pooling
regions vary with the stimulus

A third challenge to the pooling account of crowding
suggests that pooling regions, rather than being static,
might vary with the stimulus (Manassi et al., 2016;
Manassi et al., 2012; Sayim, Westheimer, & Herzog,
2010). This challenge is based on an alternative theory
of what causes similarity effects. According to this
theory, the visual system pools only within a perceptual
group. When the target and flankers group together
(Figure 12, left column), the visual system pools over
both target and flankers, leading to crowding and
poor performance identifying the target. When, on
the other hand, the target segments from the flankers
(Figure 12, right column), the visual system pools
over the target alone and flankers alone, leading to
a reduction of crowding. As in the previous section,
this theory presumes that relief from crowding arises
from mechanisms pooling over the target and not the
flankers. However, unlike the previous theory, the relief
comes from dynamic adjustment of the region over
which pooling occurs, rather than from narrow feature
bands.

Once again, there is something attractive about the
idea that pooling regions might adapt to the stimulus.
What are grouping processes for, after all, if the visual
system does not use them to intelligently process the
stimulus?

As with our discussion of multilevel crowding
mechanisms, one must ask whether an HD pooling
model can predict the effects without requiring a
more complex mechanism (flexible pooling). We have
already demonstrated that it can in some conditions,
such as the sign-of-contrast example in Figure 8.
(Similarly, Keshvari & Rosenholtz 2016) have shown

Figure 12. The flexible-pooling-region hypothesis. According to
this hypothesis, when the target and flankers group together,
they are pooled together (gray ellipses), resulting in crowding
(left column). But when target and flankers are not grouped,
they are pooled separately, resulting in less crowding (right
column).

that an HD pooling model can predict letter similarity
effects without the need for flexible pooling. As a
demonstration, consider the stimuli in Figure 13. The
target is the letter N in both cases, but the flankers
are similar in the top condition and dissimilar in the
bottom. The target N is better represented in the
dissimilar case, suggesting that it will be easier to
recognize, even with a fixed pooling mechanism.

These demonstrations suggest that an HD pooling
model may at least partially explain grouping effects.
In addition, some grouping effects may arise in part
from noncrowding mechanisms. Many crowding
experiments investigating grouping effects have a
potential confound; because crowding leads to location
ambiguity, we need to worry about cuing effects. For
example, observers asked whether the target line tilts
up or down in the dissimilar-orientation condition in
Figure 7 may make use of a 100% valid cue that the
line with the oddball orientation is the target. HD
pooling preserves the feature dissimilarity between
target and flankers that would allow the observer to
make use of this cue. This cue is not available in the
similar-orientation condition. An observer’s noisy
internal representation of the two arrays may look
something like the cartoon in Figure 14. It should
be obvious that the dissimilar condition is inherently
easier. The observer in that condition knows to ignore
the near-vertical observations, regardless of their noisy
observed locations, and respond based on the one
near-horizontal observation. In the similar-orientation
condition, the observer lacks this information and
as a result is strongly affected by the noise in all
three observations. Another way to conceptualize this
asymmetry is that an ideal observer also predicts that
the dissimilar condition will be easier. Grouping effects
in crowding may at least in part arise due to generic
cuing—that is, decision-making effects—and not due
to mechanisms specific to crowding or peripheral
vision. In this example, crowding mainly plays a role in
introducing location uncertainty, which in turn makes
the oddball cue useful.

Along these lines, Rosen and Pelli (2015) first
replicated a sign-of-contrast similarity effect (Figure 15,
left). The sign of contrast of the target was random
on each trial, so the observer did not know to report,
say, the white letter but did know to report the letter
with the unique sign of contrast. The researchers then
made the cue less useful by introducing additional rings
of letters with the same sign of contrast as the target.
Performance suffered.

In related work, Levi and Carney (2009) varied
flanker size, number, spacing, distance to closest point
of the flanker, and so on. They asked observers to
identify the orientation of a Gabor target flanked
by a variety of windowed gratings. Figure 16 shows
example stimuli from a manipulation that varies
the outer diameter of the window while keeping the
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Figure 13. Similarity effect for letter shape. Identifying the central letter N is easier when it is flanked by dissimilar flankers (I)
compared to similar flankers (M). High-dimensional pooling better encodes the target in the dissimilar condition, predicting the letter
similarity effect without requiring a flexible pooling mechanism that adjusts to pool over only the target.

Figure 14. Under conditions of crowding, a pooling model might
preserve information necessary to obtain noisy observations of
the item features but not preserve enough location information
to tell which observation goes with which item. This does not
matter for the dissimilar condition (right), because the target is
almost certainly the one with the 3° observation in this
example. This cue is not available in the similar condition,
making it inherently more difficult. Any cue that helps reduce
that uncertainty could make that difficult condition easier.

inner diameter fixed. Over a range of conditions, the
researchers found that crowding strength depended
upon the spacing between the target and flanker
centroids, not on the amount of blank space between
them. If crowding mechanisms are sensitive to object
centroids, this implies that they operate on objects, or
at least after object segmentation has occurred. This
would challenge typical pooling accounts, as it suggests
that the critical mechanisms operate later than the
presumed feature-integration stage.

Figure 15. When an odd sign of contrast no longer cues the
target (right), performance drops, as indicated by an increase in
critical spacing. Adapted from “Crowding by a repeating
pattern,” by S. Rosen and D. G. Pelli, 2015, Journal of Vision,
15(6):10, p. 4. Copyright 2015 by S. Rosen and D. G. Pelli.

However, like the similarity effects already discussed,
Levi and Carney’s (2009) experimental conditions may
be subject to cuing effects. In their critical experiment,
they varied the size of the flankers while keeping the
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Figure 16. Orientation thresholds for discriminating the
orientation of the target are lower when the flankers are large
wedges compared to small wedges, for a fixed inner diameter of
the flankers. Stimuli from Levi and Carney (2009) are to the left
of the arrows. Mongrels for these two conditions (to the right
of the arrows) preserve the distinction between large and small
flankers but obscure the target. This suggests both a potential
cuing effect and room for improvement in the model. Original
stimuli reprinted with permission from “Crowding in peripheral
vision: Why bigger is better,” by D. M. Levi and T. Carney, 2009,
Current Biology, 19, p. 1989. Copyright 2009 by Elsevier.

inner diameter of the flankers fixed. Performance
improved as the flankers got larger. They attributed this
result to the improved encoding of the target Gabor due
to the increase in the center-to-center distance between
the flanker and the target. However, larger flankers
also look considerably less like the target (Figure 16,
left). If peripheral vision preserves this information,
then observers might use it to counteract location
uncertainty—they should report of the orientation
of the small item—leading to improved performance.
The mongrels in Figure 16 show that an HD pooling
model can capture the difference in flanker size between
the two conditions, suggesting that peripheral vision
may preserve the information necessary to provide a
cue to the target. Levi and Carney’s complex pattern
of results may arise from a mix of classic crowding
(poorer encoding when target and flankers lie closer
together) and cuing effects. Determining whether cuing
effects influence these results requires experimental

verification. It would be premature to claim an
object-based crowding mechanism without ruling out
this confound.

The mongrels in Figure 16, however, certainly
suggest room for improvement in our candidate HD
pooling model (or at least in the optimization process
that generates the mongrel images). The representation
appears to lose the information necessary to report the
target orientation. The model may, for instance, need to
better mimic contrast sensitivity mechanisms so as to
better represent the low-contrast target.

Vernier acuity tasks, from Herzog and colleagues
(Malania, Herzog, & Westheimer, 2007; Manassi,
Sayim, & Herzog, 2012; Sayim, Westheimer, & Herzog,
2010), also have the flavor of cuing effects. Vernier
acuity requires a decision based on precisely placed
feature detectors. In the example in Figure 17, the green
detector gives the right answer, whereas the somewhat
misplaced orange detectors would both give the wrong
answer. The Manassi et al. (2012) experiments provided
an explicit location cue (the lines above and below the
vernier), but peripheral pooling can disrupt the location
of that cue.

Let us further examine the three conditions from
Manassi et al. (2012) as an example (Figure 18). In the
bottom condition, the vernier pair looks quite different
from the long flankers, and observers can use this
difference to reduce uncertainty; they know to respond
to the apparent tilt of the short item. This condition
should always be easy, regardless of the number of
flankers, as was found by Manassi et al. In the middle
condition, the vernier pair looks like the flankers,
removing a length cue. That condition should always
be hard, regardless of the number of flankers—which
it is. In the condition on the top, more flankers may
form a better group, which in turn may provide a better
cue to help localize the vernier. This would suggest
better performance with more flankers, as was found by
Manassi et al.

In many ways this explanation of the Manassi
et al. (2012) effects parallels the researchers’ own
interpretation. They demonstrated that grouping
strength plays a large role in task performance, and
suggest either that crowding mechanisms might operate
later in visual processing than grouping mechanisms
or that information from grouping mechanisms feeds
back to crowding mechanisms, dynamically adapting
those mechanisms. We agree that grouping plays a big
role, but attribute that role to providing a cue rather
than to dynamically adapting the mechanisms of
crowding. In fact, several recent studies have modeled
the crowded-vernier task results either almost solely
with a decision mechanism (S. Zhang, Song, & Yu,
2015) or with grouping processes alone and no special
peripheral processing (Francis, Manassi, & Herzog,
2016). It is notable that the original work of Malania
et al. (2007) demonstrated similar effects in both
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Figure 17. Vernier acuity tasks require the correct placement of feature detectors. Placing the feature detector like in the left panel
gives observers the right answer, while placing detectors like in the right panel leads to wrong answers.

Figure 18. Three conditions from Manassi, Sayim, and Herzog
(2012) recreated based on descriptions from the methods
section; stimuli to the left of the arrows, mongrels to the right.
The observer’s task is to discriminate the direction of offset of
the vernier. The bottom condition is easy and the middle
condition difficult, and in both performance is independent of
the number of flankers. Increasing the number of flankers in
the top condition improves performance, perhaps because
more flankers leads them to group into an extended object
clearly distinct from the target vernier pair. The mongrels show
that sufficient information survives pooling both to distinguish
the direction of vernier offset and to provide a cue
distinguishing flankers from vernier in the easier conditions.

fovea and periphery; the observed effects may be only
minimally due to crowding per se.

Figure 18 shows a pair of typical mongrels for
each condition. Here the question is not whether

the target is more poorly represented in the difficult
conditions—though that may be true in some
cases—but rather whether the representation preserves
enough information about both the vernier offset and
the grouping structure to support the use of grouping
as a cue. Both seem to be true. However, we note that
more recent work has found that for some of the vernier
stimuli, TTM seems unable to predict the grouping
effects; more flankers lead to worse representation of
the target (Doerig, 2019).

Having discussed the potential for cuing confounds,
we should revisit the work of Intriligator and Cavanagh
(2001). Recall that they varied the spacing of a number
of disks until observers reached threshold performance
in tracking the verbally cued item. When the disks
were arrayed in an isoeccentric circle about fixation,
the critical spacing closely matched that of crowding.
However, when the researchers instead asked observers
to track the indicated disk among others arranged
radially (Figure 19), they found a critical spacing
that was smaller than in a traditional crowding task.
Importantly, the disks in the radial task varied in size
with eccentricity—an attempt to control for cortical
magnification. This variation in size, however, likely
provided an additional cue that observers could use
to keep track of the attended item. If so, this would
explain the smaller-than-expected critical spacing in the
radial tracking task.

In summary, it appears plausible that a static
HD pooling mechanism could explain some of the
grouping effects previously attributed to a flexible
pooling mechanism. Some grouping effects, in addition,
may arise from cuing confounds rather than from
crowding per se. An HD pooling mechanism loses
some information and maintains other information.
Processing then continues, acting on the available
information. This includes later grouping processes
as well as a decision stage that makes use of both
perceptual organization and top-down knowledge to
disambiguate the target and perform the task. More
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Figure 19. Radial tracking task from Intriligator and Cavanagh (2001). Original image, based on their stimuli, on left; on right, two
typical mongrels. White circle indicates 1° at fixation. Note that pooling preserves the progressive increase in disk size fairly well.

work needs to be done first to control for potential cuing
confounds and then to quantitatively test static HD
pooling mechanisms on a wide range of phenomena
before ruling out such mechanisms in favor of more
complicated flexible pooling.

Challenge 4: High-level information
survives crowding

In standard pooling models of crowding, the pooling
supposedly occurs over fairly low-level features. For
example, in our candidate HD pooling model, many of
the statistics computed involve pooling at something
like a junction-processing stage. Empirical studies
have nonetheless found evidence that higher level
information can survive crowding. Such results might
seem at first glance to preclude the possibility that
crowding derives from a low-level pooling mechanism.

For instance, Yeh et al. (2012) have found that
Chinese characters that cannot be identified under
conditions of crowding (Figure 20) nonetheless can
prime a word/nonword lexical decision task when the
word has a meaning related to that of the crowded
character. The unidentified character can speed
responses by about 50 ms compared to trials on
which the characters are not semantically related.
Surprisingly, they found no significant difference in the
magnitude of the priming effect for a crowded versus
an uncrowded character, suggesting that significant
semantic information about the crowded word survives
despite the inability to identify it.

It is true that a low-dimensional pooling model
would degrade the available information so as to render
higher level processing nearly impossible. Consider
for the sake of argument a model that encodes the
visual input using only the mean of a single feature.

The loss of information would be profound. Such
a model could clearly predict difficulty identifying
a crowded target. But it would also predict poor
performance at nearly all peripheral tasks. How would
an observer ever identify anything, even an isolated
single letter? However, an HD pooling model behaves
fundamentally differently. High-dimensional pooling
preserves far more information about the stimulus and
can support many tasks. The mongrels shown in this
article demonstrate that sufficient information survives
for higher level processes to make rough estimates
of the number (Figure 3) and size (Figure 16) of
objects presented, detect feature pop-out (Figures 7
and Figure 8), construct perceptual groups (Figure 18),
and form coarse representations of shapes (Figure 9)
and letters (Figure 13). Previous work has shown
that the available information suffices for some
symbol-identification tasks, scene perception, and
visual search (Balas et al., 2009; Ehinger & Rosenholtz,
2016; Keshvari & Rosenholtz, 2016; Rosenholtz,
Huang, Raj, et al., 2012). Losses from an HD pooling
model do not rule out later processing.

Can a pooling model preserve enough information
about the target to prime a lexical decision task while
still leading to poor identification performance? While
this certainly seems a challenge, it is not out of the
question. Identifying a Chinese character requires
accessing sufficient information to distinguish it from
a large number of alternatives. On the other hand,
we do not know how much information is required
to obtain a priming effect. Plausibly, portions of a
crowded character might survive pooling—not enough
to produce correct identification, but sufficient to
provide some information about the meaning. Figure 20
shows that mongrels preserve a fair number of details
about the crowded character, for example the radical
“ ”. There also may be enough information to identify
the radical “ ”. Radicals are characters that either
carry meaning when they appear by themselves or
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Figure 20. Stimuli from Yeh, He, and Cavanagh (2012) to the left side of the arrow, and mongrels for those original stimuli.
High-dimensional pooling preserves single characters very well. Encoding of crowded characters is ambiguous but preserves some
information—for example, some radicals. Thanks to Su-Ling Yeh for providing example stimuli that were not previously published.

are common subparts in a family of characters that
may share similar meaning. For example, the target
character in Figure 20 means “boat,” and its radical,
“ ”, is commonly associated with other characters
related to boats as well. Seeing this radical alone might
be able to elicit representations associated with boats,
thus allowing for a priming effect. Yeh et al. (2012)
intentionally picked for their lexical decision task
characters for which the radical did not match the
meaning of the word, thus avoiding the most obvious
confound. Nonetheless, the perception of such radicals
may elicit some semantic processing. Observers were
approximately 25% correct at the crowded-character
recognition task, whereas chance performance would
be far lower. Though the researchers examined priming
only on trials on which object recognition failed, we
should not assume that observers had no information
about the target on those trials. Rather, 25% correct
performance may imply that observers could narrow
the answer to four possibilities. Perhaps all four
choices activated some semantic information, leading
to priming while prohibiting correct performance
at the harder character-identification task. While it

seems hard to imagine that the magnitude of priming
would be as great as with correct identification of an
uncrowded target, it would nonetheless be interesting
to examine these conditions to ask what information
about Chinese characters survives crowding, and
whether TTM preserves that information.

More generally, given our presumption that
processing continues after pooling, we expect task
to matter. In an earlier section, we discussed this in
regard to set perception. Lacking the information to
identify a target in a crowded array does not mean
one lacks all information about that target, as if one
had failed to select the target and therefore failed to
process it. Low-level crowding may permit some higher
level information to “get through the bottleneck of
crowding” (Fischer & Whitney, 2011, p. 1389). One
may, for example, have sufficient information about
the target for it to influence perception of the mean.
Nor does ability to perform a task imply that the
observer has full information about the stimulus—that
is, that no crowding has occurred. One could perform
a target/nontarget face task in the periphery (Louie
et al., 2007) and yet not preserve sufficient information
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to support a more fine-grain identification of that face
among 100 possible choices. Performance can differ on
two tasks because they require different information or
have different inherent difficulty.

Conclusions

Pooling models of crowding have been popular
under a number of different names, from faulty
integration through compulsory averaging to forced
texture perception. Recent empirical results have
appeared, on first examination, to challenge a pooling
account of crowding. This suggestion, however, has
arisen in large part from attempts to gain intuitions
about an inherently high-dimensional representation
by extrapolating from simple low-dimensional models.
Intuitions about low-dimensional models notoriously
do not generalize well to higher dimensions. One
of our goals in this article is to provide better
intuitions about HD pooling models than one can
acquire from introspecting based on low-dimensional
straw-man models, and based on those intuitions
to reevaluate the seriousness of the challenges to
pooling models. High-dimensional pooling preserves
enough information to recognize features of individual
elements, construct shape and perceptual groups, and
make judgments about objects and scenes. This calls
into question a number of the model challenges. Other
apparent model challenges may arise at least in part
from decision effects that are not specific to crowding.
Further, more quantitative examination is required.
Nonetheless, we suggest that reasonable doubt remains
as to whether the challenges truly eliminate pooling
models. It appears that pooling remains viable as an
explanation of peripheral crowding.

At a higher level, two cautionary lessons emerge.
First, one should be careful not to confuse a
phenomenon with a mechanism. Substitution
phenomena do not imply a substitution mechanism.
Crowding by similar orientation, sign of contrast, parts,
shapes, faces, or point-light walkers does not imply
that difficulty identifying the crowded peripheral target
arises from mechanisms operating at the corresponding
processing stage. Second, one should avoid claiming
that a model cannot explain a set of results without
actually specifying and testing the model.

Examples in both this article and earlier publications
clearly point to imperfections in our candidate HD
pooling model, TTM. The model lacks some obvious
second-order statistics that would better capture
contour integration, calling into question whether it
can explain effects such as those observed by Livne
and Sagi (2007), where crowding of a target Gabor
was relieved if the flanking Gabors align and form
a smooth contour. The model captures a good deal

of end stopping and yet lacks explicit end-stopping
features. Such features may be important for tasks such
as distinguishing an array of Os from one of Os and
Cs. Lastly, readers might remember that the target was
altogether lost in the mongrels for stimuli from Levi
and Carney (2009), suggesting at minimum a failure
to handle low-contrast information for these stimuli
(though whether the fault lies in the encoding itself
or in the optimization procedure that generates the
mongrels remains to be seen).

Eliminating pooling models as a class is difficult.
Choosing what features to pool provides a powerful
and flexible way of varying the information lost and
maintained by a given model. Vary the number or
complexity of features, or the areas over which the
model pools them, and the information available can
change in profound ways.

One might instead go so far as to think of an HD
pooling model in terms of Occam’s razor. It provides
the (relatively) simple explanation for a range of
phenomena, and as such serves as a useful check
for whether more complex mechanisms are required
and, if so, which ones. The Texture Tiling Model has
been particularly successful in this regard, not only
explaining a range of crowding results but calling
into question more complex explanations for difficult
visual search, change blindness, set perception, and
easy scene perception (Rosenholtz, 2016; Rosenholtz,
Huang, & Ehinger, 2012). Future work is needed to
show quantitatively how much TTM does or does
not account for the experimental findings associated
with the model challenges. Nonetheless, the mongrels,
which provide us with intuitive visualizations of what
information is preserved by the model, show promise.

Explaining crowding phenomena may well prove to
require more complicated mechanisms. The challenge
for alternative models of crowding lies in capturing
the range of phenomena already explained by pooling
models. TTM has, to date, been tested on over 70
conditions. Pooling models have been sufficiently
successful that competitors must demonstrate similar or
better explanatory power for a wide range of empirical
results. Gone are the days in which we can consider a
new model to be viable when it explains the results of
a single experiment. The model challenges reviewed in
this article provide a useful test set for distinguishing
between models as we move forward.

Keywords: peripheral vision, crowding, pooling
mechanism, high-dimensional pooling models
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Footnotes
1Details about the Texture Tiling Model and relevant discussion can be
found in Appendix A.
2Models like TTM are often referred to as “texture synthesis” models, but
this is a misnomer. We do not assume that the visual system “synthesizes”
any textures. The texture synthesis is used only to generate members of
the equivalence class of the model. It is not part of the model per se.
3The SDT model of Morgan and Solomon (2005) corrects an important
error in the original (Parkes et al., 2001) report. Correcting this modeling
error does not appreciably change the conclusions of Parkes et al.

References

Agaoglu, M. N., & Chung, S. T. (2016). Can (should)
theories of crowding be unified? Journal of Vision,
16(15):10, 1–22, https://doi.org/10.1167/16.15.10.
[PubMed] [Article]

Andriessen, J. J., & Bouma, H. (1976). Eccentric vision:
Adverse interactions between line segments. Vision
Research, 16(1), 71–78.

Balas, B. J. (2006). Texture synthesis and perception:
Using computational models to study texture.
Vision Research, 46(3), 299–309, https:
//doi.org/10.1016/j.visres.2005.04.013.

Balas, B. J., Nakano, L., & Rosenholtz, R. (2009).
A summary-statistic representation in peripheral
vision explains visual crowding. Journal of Vision,
9(12):13, 1–18, https://doi.org/10.1167/9.12.13.
[PubMed] [Article]

Banks, W. P., & White, H. (1984). Lateral interference
and perceptual grouping in visual detection.
Perception & Psychophysics, 36(3), 285–295.

Bell, A. J., & Sejnowski, T. J. (1995). An information
maximisation approach to blind separation and
blind deconvolution. Neural Computation, 7(6),
1129–1159.

Bernard, J. B., & Chung, S. T. (2011). The dependence
of crowding on flanker complexity and target–
flanker similarity. Journal of Vision, 11(8):1, 1–16,
https://doi.org/10.1167/11.8.1. [PubMed] [Article]

Bouma, H. (1970). Interactional effects in parafoveal
letter recognition. Nature, 226, 177–178.

Chaney, W., Fischer, J., & Whitney, D. (2014). The
hierarchical sparse selection model of visual
crowding. Frontiers in Integrative Neuroscience, 8,
73, https://doi.org/10.3389/fnint.2014.00073.

Chung, S. T., & Legge, G. E. (2009). Precision of
position signals for letters. Vision Research, 49,
1948–1960.

Dakin, S. C., Cass, J., Greenwood, J. A., & Bex,
P. J. (2010). Probabilistic, positional averaging
predicts object-level crowding effects with letter-like
stimuli. Journal of Vision, 10(10):14, 1–16,
https://doi.org/10.1167/10.10.14. [PubMed] [Article]

DiCarlo, J. J., & Cox, D. D. (2007). Untangling
invariant object recognition. Trends in Cognitive
Sciences, 11(8), 333–341.

Doerig, A. B. (2019). Beyond Bouma’s window:
How to explain global aspects of crowding?
PLoS Computational Biology, 15(5), e1006580,
https://doi.org/10.1371/journal.pcbi.1006580.

Ehinger, K. A., & Rosenholtz, R. (2016). A general
account of peripheral encoding also predicts scene
perception performance. Journal of Vision, 16(2):13,
1–19, https://doi.org/10.1167/16.2.13. [PubMed]
[Article]

Ester, E. F., Klee, D., & Awh, E. (2014). Visual crowding
cannot be wholly explained by feature pooling.
Journal of Experimental Psychology: Human
Perception and Performance, 40(3), 1022–1033.

Farzin, F., Rivera, S. M., & Whitney, D. (2009).
Holistic crowding of Mooney faces. Journal of
Vision, 9(6):18, 1–15, https://doi.org/10.1167/9.6.18.
[PubMed] [Article]

Fischer, J., & Whitney, D. (2011). Object-level visual
information gets through the bottleneck of
crowding. Journal of Neurophysiology, 106(3),
1389–1398.

Francis, G., Manassi, M., & Herzog, M. H. (2016).
Cortical dynamics of perceptual grouping and
segmentation: Crowding. Journal of Vision, 16(12),
1114, https://doi.org/10.1167/16.12.1114. [Abstract]

Freeman, J., Chakravarthi, R., & Pelli, D. G. (2012).
Substitution and pooling in crowding. Attention,
Perception & Psychophysics, 74(2), 379–396.

Freeman, J., & Simoncelli, E. P. (2011). Metamers of
the ventral stream. Nature Neuroscience, 14(9),
1195–1201.

Freeman, J., Ziemba, C. M., Heeger, J. D., Simoncelli,
E. P., & Movshon, J. A. (2013). A functional and
perceptual signature of the second visual area in
primates. Nature Neuroscience, 16(7), 974–981.

Fukushima, K. (1980). Neocognitron: A self-organizing
neural network model for a mechanism of pattern

Downloaded from jov.arvojournals.org on 09/05/2024

https://doi.org/10.1167/16.15.10
https://www.ncbi.nlm.nih.gov/pubmed/27936273
https://jov.arvojournals.org/article.aspx?articleid=2593046
https://doi.org/10.1016/j.visres.2005.04.013
https://doi.org/10.1167/9.12.13
https://www.ncbi.nlm.nih.gov/pubmed/20053104
https://jov.arvojournals.org/article.aspx?articleid=2122150
https://doi.org/10.1167/11.8.1
https://www.ncbi.nlm.nih.gov/pubmed/21730225
https://jov.arvojournals.org/article.aspx?articleid=2120999
https://doi.org/10.3389/fnint.2014.00073
https://doi.org/10.1167/10.10.14
https://www.ncbi.nlm.nih.gov/pubmed/20884479
https://jov.arvojournals.org/article.aspx?articleid=2121066
https://doi.org/10.1371/journal.pcbi.1006580
https://doi.org/10.1167/16.2.13
https://www.ncbi.nlm.nih.gov/pubmed/27893077
https://jov.arvojournals.org/article.aspx?articleid=2587784
https://doi.org/10.1167/9.6.18
https://www.ncbi.nlm.nih.gov/pubmed/19761309
https://jov.arvojournals.org/article.aspx?articleid=2204012
https://doi.org/10.1167/16.12.1114
https://jov.arvojournals.org/article.aspx?articleid=2550988


Journal of Vision (2019) 19(7):15, 1–25 Rosenholtz, Yu, & Keshvari 22

recognition unaffected by shift in position.
Biological Cybernetics, 36, 193–202.

Greenwood, J. A., Bex, P. J., & Dakin, S. C. (2009).
Positional averaging explains crowding with
letter-like stimuli. Proceedings of the National
Academy of Sciences, USA, 106, 13130–13135,
https://doi.org/10.1073/pnas.0901352106.

Greenwood, J. A., Bex, P. J., & Dakin, S. C. (2012).
Crowding follows the binding of relative position
and orientation. Journal of Vision, 12(3):18, 1–20,
https://doi.org/10.1167/12.3.18. [PubMed] [Article]

Harrison, W. J., & Bex, P. J. (2015). A unifying model of
orientation crowding in peripheral vision. Current
Biology, 25, 3213–3219.

He, S., & Cavanagh, P. I. (1996). Attentional resolution
and the locus of awareness. Nature, 383, 334–338.

Huckauf, A., & Heller, D. (2002). Spatial selection in
peripheral letter recognition: In search of boundary
conditions. Acta Psychologica, 111(1), 101–123.

Ikeda, H., Watanabe, K., & Cavanagh, P. (2013).
Crowding of biological motion stimuli.
Journal of Vision, 13(4):20, 1–6, https:
//doi.org/10.1167/13.4.20. [PubMed] [Article]

Intriligator, J., & Cavanagh, P. (2001). The spatial
resolution of visual attention. Cognitive Psychology,
43, 171–216.

Kalpadakis-Smith, A., Goffaux, V., & Greenwood, J.
(2018). Crowding for faces is determined by visual
(not holistic) similarity: Evidence from judgments
of eye position. Scientific Reports, 8, 12556.

Kanwisher, N., Tong, F., & Nakayama, K. (1998). The
effect of face inversion on the human fusiform face
area. Cognition, 68, B1–B11.

Keshvari, S., & Rosenholtz, R. (2016). Pooling of
continuous feature provides a unifying account
of crowding. Journal of Vision, 16(3):39, 1–15,
https://doi.org/10.1167/16.3.39. [PubMed] [Article]

Kimchi, R., & Pirkner, Y. (2015). Multiple level
crowding: Crowding at the object parts level and
at the object configural level. Perception, 44(11),
1275–1292.

Kooi, F. L., Toet, A., Tripathy, S. P., & Levi, D. M.
(1994). The effect of similarity and duration on
spatial interaction in peripheral vision. Spatial
Vision, 8(2), 255–279.

Korte, W. (1923). Über die Gestaltauffassung im
indirekten Sehen. Zeitschrift für Psychologie, 93,
17–82.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet classification with deep convolutional
neural networks. In Proc. Neural Inf. Process. Syst.
2012 (pp. 1097–1105). Red Hook, NY: Curren
Associates.

Lettvin, J. Y. (1976). On seeing sidelong. The Sciences,
16(4), 10–20.

Levi, D. M. (2008). Crowding—An essential bottleneck
for object recognition: A mini review. Vision
Research, 48, 635–654.

Levi, D. M., & Carney, T. (2009). Crowding in
peripheral vision: Why bigger is better. Current
Biology, 19, 1988–1993.

Levi, D., Hariharan, S., & Klein, S. (2002). Supressive
and facilitatory spatial interactions in peripheral
vision: Peripheral crowding is neither size invariant
nor simple contrast masking. Journal of Vision,
2(2):3, 167–177, https://doi.org/10.1167/2.2.3.
[PubMed] [Article]

Liu, T., Jiang, Y., Sun, X., & He, S. (2009). Reduction
of the crowding effect in spatially adjacent but
cortically remote visual stimuli. Current Biology,
19(2), 127–132.

Livne, T., & Sagi, D. (2007). Configuration influence
on crowding. Journal of Vision, 7(2):4, 1–12,
https://doi.org/10.1167/7.2.4. [PubMed] [Article]

Louie, E. G., Bressler, D. W., & Whitney, D.
(2007). Holistic crowding: Selective interference
between configural representations of faces in
crowded scenes. Journal of Vision, 7(2):24, 1–11,
https://doi.org/10.1167/7.2.24. [PubMed] [Article]

Ma, W. J., & Huang, W. (2009). No capacity limit in
attentional tracking: Evidence for probabilistic
inference under a resource constraint. Journal of
Vision, 9(11):3, 1–30, https://doi.org/10.1167/9.11.3.
[PubMed] [Article]

Malania, M., Herzog, M. H., & Westheimer, G.
(2007). Grouping of contextual elements that affect
vernier thresholds. Journal of Vision, 7(2):1, 1–7,
https://doi.org/10.1167/7.2.1. [PubMed] [Article]

Manassi, M., Lonchampt, S., Clarke, A., & Herzog, M.
H. (2016). What crowding can tell us about object
representations. Journal of Vision, 16(3):35, 1–13,
https://doi.org/10.1167/16.3.35. [PubMed] [Article]

Manassi, M., Sayim, B., & Herzog, M. H. (2012).
Grouping, pooling, and when bigger is better in
visual crowding. Journal of Vision, 12(10):13, 1–14,
https://doi.org/10.1167/12.10.13. [PubMed] [Article]

Manassi, M., & Whitney, D. (2018). Multi-level
crowding and the paradox of object recognition in
clutter. Current Biology, 28, R127–R133.

Martelli, M., Majaj, N. J., & Pelli, D. G. (2005). Are
faces processed like words? A diagnostic test for
recognition by parts. Journal of Vision, 5(1):6,
58–70, https://doi.org/10.1167/5.1.6. [PubMed]
[Article]

Morgan, M. J., & Solomon, J. A. (2005). Capacity limits
for spatial discrimination. In L. Itti, G. Rees, & J.

Downloaded from jov.arvojournals.org on 09/05/2024

https://doi.org/10.1073/pnas.0901352106
https://doi.org/10.1167/12.3.18
https://www.ncbi.nlm.nih.gov/pubmed/22438467
https://jov.arvojournals.org/article.aspx?articleid=2121193
https://doi.org/10.1167/13.4.20
https://www.ncbi.nlm.nih.gov/pubmed/23532908
https://jov.arvojournals.org/article.aspx?articleid=2121525
https://doi.org/10.1167/16.3.39
https://www.ncbi.nlm.nih.gov/pubmed/26928055
https://jov.arvojournals.org/article.aspx?articleid=2498972
https://doi.org/10.1167/2.2.3
https://www.ncbi.nlm.nih.gov/pubmed/12678590
https://jov.arvojournals.org/article.aspx?articleid=2192478
https://doi.org/10.1167/7.2.4
https://www.ncbi.nlm.nih.gov/pubmed/18217819
https://jov.arvojournals.org/article.aspx?articleid=2122246
https://doi.org/10.1167/7.2.24
https://www.ncbi.nlm.nih.gov/pubmed/18217839
https://jov.arvojournals.org/article.aspx?articleid=2122186
https://doi.org/10.1167/9.11.3
https://www.ncbi.nlm.nih.gov/pubmed/20053066
https://jov.arvojournals.org/article.aspx?articleid=2203974
https://doi.org/10.1167/7.2.1
https://www.ncbi.nlm.nih.gov/pubmed/18217816
https://jov.arvojournals.org/article.aspx?articleid=2121904
https://doi.org/10.1167/16.3.35
https://www.ncbi.nlm.nih.gov/pubmed/26913627
https://jov.arvojournals.org/article.aspx?articleid=2497927
https://doi.org/10.1167/12.10.13
https://www.ncbi.nlm.nih.gov/pubmed/23019118
https://jov.arvojournals.org/article.aspx?articleid=2193765
https://doi.org/10.1167/5.1.6
https://www.ncbi.nlm.nih.gov/pubmed/15831067
https://jov.arvojournals.org/article.aspx?articleid=2192703


Journal of Vision (2019) 19(7):15, 1–25 Rosenholtz, Yu, & Keshvari 23

K. Tsotsos (Eds.), Neurobiology of attention (pp.
8–10). Burlington, MA: Academic Press.

Nandy, A. S., & Tjan, B. S. (2012). Saccade-
confounded image statistics explain visual
crowding. Nature Neuroscience, 15, 463–469,
https://doi.org/10.1038/nn.3021.

Parkes, L., Lund, J., Angelucci, A., Solomon, J. A.,
& Morgan, J. (2001). Compulsory averaging of
crowded orientation signals in human vision.
Nature Neuroscience, 4, 739–744.

Pelli, D. G., Majaj, N. J., Raizman, N., Christian, C. J.,
Kim, E., & Palomares, M. C. (2009). Grouping in
object recognition: The role of a Gestalt law in letter
identification. Cognitive Neuropsychology, 26(1),
36–49, https://doi.org/10.1080/13546800802550134.

Pelli, D. G., Palomares, M., & Majaj, N. (2004).
Crowding is unlike ordinary masking: Distin-
guishing feature integration from detection.
Journal of Vision, 4(12):12, 1136–1169,
https://doi.org/10.1167/14.12.12. [PubMed] [Article]

Pelli, D. G., & Tillman, K. A. (2008). The uncrowded
window of object recognition. Nature Neuroscience,
11, 1129–1135.

Pelli, D. G., Tillman, K. A., Freeman, J., Su, M., Berger,
T., & Majaj, N. J. (2007). Crowding and eccentricity
determine reading rate. Journal of Vision, 7(2):20,
1–36, https://doi.org/10.1167/7.2.20. [PubMed]
[Article]

Poder, E., & Wagemans, J. (2007). Crowding with
conjunctions of simple features. Journal of Vision,
7(2):23, 1–12, https://doi.org/10.1167/7.2.23.
[PubMed] [Article]

Portilla, J., & Simoncelli, E. P. (2000). A parametric
texture model based on joint statistics of complex
wavelet coefficients. International Journal of
Computer Vision, 40(1), 49–71.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical
models of object recognition in cortex. Nature
Neuroscience, 2(11), 1019–1025.

Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P.
(2011). Predictive remapping of attention across eye
movements. Nature Neuroscience, 14(2), 262–256.

Rosen, S., & Pelli, D. G. (2015). Crowding by a
repeating pattern. Journal of Vision, 15(6):10,
1–9, https://doi.org/10.1167/15.6.10. [PubMed]
[Article]

Rosenholtz, R. (2014). Texture perception.
In J. Wagemans (Ed.), Oxford handbook
of perceptual organization (pp. 167–186).
Oxford, UK: Oxford University Press,
doi:10.1093/oxfordhb/9780199686858.013.058.

Rosenholtz, R. (2016). Capabilities and limitations of
peripheral vision. Annual Review of Vision Science,
2(1), 437–457.

Rosenholtz, R., Huang, J., & Ehinger, K. A. (2012).
Rethinking the role of top-down attention in vision:
Effects attributable to a lossy representation in
peripheral vision. Frontiers in Psychology, 3, 13,
https://doi.org/10.3389/fpsyg.2012.00013.

Rosenholtz, R., Huang, J., Raj, A., Balas,
B., & Ilie, L. (2012). A summary statistic
representation in peripheral vision explains
visual search. Journal of Vision, 12(4):14, 1–17,
https://doi.org/10.1167/12.4.14. [PubMed] [Article]

Sayim, B., Westheimer, G., & Herzog, M. H. (2010).
Gestalt factors modulate basic spatial vision.
Psychological Science, 21(5), 641–644.

Scolari, M., Kohnen, A., Barton, B., & Awh, E.
(2007). Spatial attention, preview, and popout:
Which factors influence critical spacing in
crowded displays? Journal of Vision, 7(2):7, 1–23,
https://doi.org/10.1167/7.2.7. [PubMed] [Article]

Strasburger, H. (2005). Unfocused spatial attention
underlies the crowding effect in indirect form
vision. Journal of Vision, 5(11):8, 1024–1037,
https://doi.org/10.1167/5.11.8. [PubMed] [Article]

Strasburger, H., & Malania, M. (2013). Source
confusion is a major source of crowding.
Journal of Vision, 13(1):24, 1–20, https:
//doi.org/10.1167/13.1.24. [PubMed] [Article]

Sun, H.-M., & Balas, B. (2015). Face features and face
configurations both contribute to visual crowding.
Attention, Perception, & Psychophysics, 77(2),
508–519.

Toet, A., & Levi, D. M. (1992). The two-dimensional
shape of spatial interaction zones in the parafovea.
Vision Research, 32, 1349–1357.

Tyler, C. W., & Likova, L. T. (2007). Crowding: A
neuroanalytic approach. Journal of Vision, 7(2):16,
1–9, https://doi.org/10.1167/7.2.16. [PubMed]
[Article]

van den Berg, R., Johnson, A., Anton, A. M.,
Schepers, A. L., & Cornelissen, F. W. (2012).
Comparing crowding in human and ideal
observers. Journal of Vision, 12(8):13, 1–15,
https://doi.org/10.1167/12.8.13. [PubMed] [Article]

van den Berg, R., Roerdink, J. B., & Cornelissen, F.
W. (2007). On the generality of crowding: Visual
crowding in size, saturation, and hue compared
to orientation. Journal of Vision, 7(2):14, 1–11,
https://doi.org/10.1167/7.2.14. [PubMed] [Article]

van den Berg, R., Roerdink, J. B., & Cornelissen,
F. W. (2010). A neurophysiologically plausible
population code model for feature integration
explains visual crowding. PLoS Computational
Biology, 6, e1000646.

Wallis, T. S., Bethge, M., & Wichmann, F. A. (2016).
Testing models of peripheral encoding using

Downloaded from jov.arvojournals.org on 09/05/2024

https://doi.org/10.1038/nn.3021
https://doi.org/10.1080/13546800802550134
https://doi.org/10.1167/14.12.12
https://www.ncbi.nlm.nih.gov/pubmed/15669917
https://jov.arvojournals.org/article.aspx?articleid=2192655
https://doi.org/10.1167/7.2.20
https://www.ncbi.nlm.nih.gov/pubmed/18217835
https://jov.arvojournals.org/article.aspx?articleid=2122073
https://doi.org/10.1167/7.2.23
https://www.ncbi.nlm.nih.gov/pubmed/18217838
https://jov.arvojournals.org/article.aspx?articleid=2122147
https://doi.org/10.1167/15.6.10
https://www.ncbi.nlm.nih.gov/pubmed/26024457
https://jov.arvojournals.org/article.aspx?articleid=2293653
http://dx.doi.org/10.1093/oxfordhb/9780199686858.013.058
https://doi.org/10.3389/fpsyg.2012.00013
https://doi.org/10.1167/12.4.14
https://www.ncbi.nlm.nih.gov/pubmed/22523401
https://jov.arvojournals.org/article.aspx?articleid=2121117
https://doi.org/10.1167/7.2.7
https://www.ncbi.nlm.nih.gov/pubmed/18217822
https://jov.arvojournals.org/article.aspx?articleid=2122360
https://doi.org/10.1167/5.11.8
https://www.ncbi.nlm.nih.gov/pubmed/16441200
https://jov.arvojournals.org/article.aspx?articleid=2121887
https://doi.org/10.1167/13.1.24
https://www.ncbi.nlm.nih.gov/pubmed/23335321
https://jov.arvojournals.org/article.aspx?articleid=2121358
https://doi.org/10.1167/7.2.16
https://www.ncbi.nlm.nih.gov/pubmed/18217831
https://jov.arvojournals.org/article.aspx?articleid=2121993
https://doi.org/10.1167/12.8.13
https://www.ncbi.nlm.nih.gov/pubmed/22923724
https://jov.arvojournals.org/article.aspx?articleid=2192155
https://doi.org/10.1167/7.2.14
https://www.ncbi.nlm.nih.gov/pubmed/18217829
https://jov.arvojournals.org/article.aspx?articleid=2121971


Journal of Vision (2019) 19(7):15, 1–25 Rosenholtz, Yu, & Keshvari 24

metamerism in an oddity paradigm. Journal of
Vision, 16(2):4, 1–30, https://doi.org/10.1167/16.2.4.
[PubMed] [Article]

Whitney, D., & Levi, D. M. (2011). Visual crowding:
A fundamental limit on conscious perception and
object recognition. Trends in Cognitive Sciences,
15(4), 160–168.

Yamins, D. L., &DiCarlo, J. J. (2016). Using goal-driven
deep learning models to understand sensory cortex.
Nature Neuroscience, 19(3), 356–365.

Yeh, S. L., He, S., & Cavanagh, P. (2012). Semantic
priming from crowded words. Psychological
Science, 23(6), 608–616.

Zhang, S., Song, M., & Yu, A. J. (2015). Bayesian
hierarchical model of local-global processing:
Visual crowding as a case-study. In Proceedings
of the Cognitive Science Society Conference (pp.
2808–2810). Austin, TX: Cognitive Science Society.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-
resolution representations in visual working
memory. Nature, 453(7192), 233–235.

Zhang, X., Huang, J., Yigit-Elliot, S., & Rosenholtz,
R. (2015). Cube search, revisited. Journal of
Vision, 15(3):9, 1–18, https://doi.org/10.1167/15.3.9.
[PubMed] [Article]

Appendix A: The texture tiling
model

In the examples in this article, we use the Texture
Tiling Model (TTM) as our candidate high-dimensional
pooling model. This appendix gives a more detailed
explanation of the model, along with a discussion
of various decisions made in creating the model. In
particular, it describes the statistics measured and the
pooling regions used, and gives a brief description
of the algorithm by which we generate visualizations
of the information lost and preserved in peripheral
vision. We have provided the MATLAB code at
https://dspace.mit.edu/handle/1721.1/121152.

This article utilizes what we refer to as the full-field
version of TTM. While some of our earlier articles
(Balas et al., 2009; Rosenholtz, Huang, & Ehinger, 2012;
Keshvari & Rosenholtz, 2016) have made predictions
based on a single-pooling-region version—equivalent,
to a first approximation, to Portilla and Simoncelli’s
(2000) texture analysis/synthesis algorithm, modified
to work robustly on psychophysical displays with
large blank regions—the present model utilizes
information from multiple pooling regions across
the visual field. Within each pooling region, TTM
runs this modified Portilla and Simoncelli algorithm

with the following parameters: number of scales = 4;
number of orientations = 4; and, for these examples,
Na = 7. The parameter Na (also referred to as M by
Portilla and Simoncelli) specifies the number of central
samples of the autocorrelation used as constraints.
In the past we have also used Na = 9, which gives
similar results for most stimuli tested. This algorithm
computes the following summary statistics: marginal
statistics of luminance and color; autocorrelation;
correlations of responses of V1-like cells across
location, orientation, and scale; and phase correlation
across scales. Presuming that the visual system
computes local summary statistics as hypothesized by
pooling models, further investigation will be required to
pinpoint exactly what statistics are involved. Though
previous work has suggested that the aforementioned
statistics provide a good initial guess, we would be
surprised if this initial set of statistics proved to be
correct. The summary statistics might involve more
biologically plausible computations, or might derive
from features learned for ecological tasks such as object
recognition. Additional statistics might be needed
to better capture contour-integration behavior, or to
more explicitly compute end stopping. In addition, one
would of course expect to include some statistics based
on motion and on binocular disparity.

Given a fixation point, TTM tiles the image with
overlapping pooling regions. For the examples in this
article, we have used square pooling regions. Though
we have previously implemented elongated elliptical
pooling regions, the square regions allowed for faster
processing and led to fewer synthesis artifacts in our
hands, while otherwise not greatly differing in results
from elliptical pooling regions. Square receptive fields
are of course completely biological implausible. They
also appear in opposition to behavioral work, which
finds roughly twice the critical spacing in the radial
direction as in the tangential (Toet & Levi, 1992),
though such differences in critical spacing could also
derive from the pattern of overlap of the pooling
regions (Rosenholtz, 2016). Further work is required
to determine the number, location, size, and degree
of overlap of these regions necessary to best predict
human behavior. The pooling regions used here have
width equal to 0.5 times the eccentricity at their center.
They have a radial overlap of 45%; for a pair of
pooling regions arranged in a radial direction, this
specifies what percentage of the width of the inner
pooling region overlaps with the outer pooling region.
Tangential overlap is determined by the size of the
pooling regions plus the number of pooling regions
in the tangential direction. The examples here use 36
pooling regions tangentially—that is, with their centers
every 10° around a circle centered at fixation.

The algorithm performs two preprocessing steps.
First, if one simply lays down pooling regions across the
entire image, some pooling regions will land partially
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outside the original image, necessitating image padding.
Second, prior to measurement of statistics, TTM blurs
the input image to approximately mimic the loss of
acuity with eccentricity.

Synthesis is initiated by assuming that a foveal region
(which we conceptualize as a small 1°–2° circle about
fixation) is reconstructed perfectly. For the purposes
of this article, we used a default size for this fovea of
32 pixels in radius. One might loosely think of this
as the number of pixels per degree. Then, moving in
an outward sweep, each subsequent pooling region
is synthesized using the previous partial-synthesis
result as the seed for the texture-synthesis process
(plus, in the first iteration, noise in regions not yet
synthesized). When replacing each synthesized patch,
we blend it with overlapping regions using a Gaussian
distance-weighted average. A second sweep reconstructs
the pooling regions from the outer rings inward, ending
by reapplying the fovea. This process iterates a number
of times over the entire image. We use a coarse-to-fine
strategy, starting with the coarsest scale and adding
one scale at a time, to speed convergence. At each stage
of this coarse-to-fine procedure we run 10 iterations

of synthesis of the entire image. Within each such
iteration, we run three iterations of each pooling region.

Little previous work speaks to what color statistics
the model should compute. It seems likely that the
visual system computes summary statistics in several
color channels, and perhaps also computes some sort
of correlations between those channels. More research
is required. Here we first use independent component
analysis (Bell & Sejnowski, 1995) to split the image
into three color bands. This is somewhat unrealistic
in that it suggests that the computed statistics change
with the contents of the stimulus, but in practice it
works well. We measure statistics in each of these bands
independently. Within each local pooling region we also
measure the covariance between the three color bands,
and apply that constraint after synthesizing the three
channels of each local pooling region.

Additional details are documented with the code.
This includes details involved in the functioning of the
code and recommendations for running the algorithm,
including choices of the number of pixels per degree
and other adjustments to the parameters of the
algorithm.
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